Programme de colle n°7

semaine du 10 au 14 novembre

Notions vues en cours

Chapitre 10: Primitives et intégrales

- Un formulaire de primitives usuelles est disponible sur le site. On y trouve notamment les primitives de $x \mapsto u'(ax+b), u'e^u, \frac{u'}{u}, u'u^\alpha \ (\alpha \in \mathbb{R} \setminus \{-1\}),$ avec u une fonction dérivable sur I
- Primitive d'une fonction sur un intervalle I, la différence de deux primitives sur un intervalle est une constante
- ullet Primitive d'une fonction sur un ensemble D, les constantes d'intégration peuvent être différentes sur chaque sous-intervalle de D
- Intégrale d'une fonction continue sur [a, b], notation $\int_a^b f(x) dx$ ou $\int_a^b f$. Extensions $\int_b^a f$ et $\int_a^a f$, interprétation de $\int_a^b f$ comme une aire signée
- Théorème fondamental de l'analyse, notation $[F(x)]_a^b$, toute fonction continue sur I admet des primitives, définition d'une fonction de classe \mathscr{C}^1
- Propriétés de l'intégrale : linéarité, Chasles, croissance, positivité, IPP, changement de variables
- Notation (officielle) $\int_{-\infty}^{x} f(t)dt$ et $[F(t)]^{x}$ pour désigner une primitive générique de f, cette expression n'est défini qu'à constante (additive) près
- \bullet Intégrales de fonctions de $\mathbb R$ dans $\mathbb C,$ intégrale d'une fonction paire, impaire ou périodique
- Les méthodes pour intégrer les fonctions suivantes doivent être connues : $e^{ax}\cos(bx)$, $e^{ax}\sin(bx)$ et $\frac{1}{ax^2+bx+c}$ avec $a,b,c\in\mathbb{R}$ (vu : décomposition de $\frac{1}{(x-\alpha)(x-\beta)}$ en éléments simples)
- Vu en TD : règle de Bioche et changement de variable $x = \tan \frac{t}{2}$ pour intégrer les fonctions rationnelles en $\cos x$ et en $\sin x$.

Chapitre 11: Équations différentielles

- ED: définition, ordre, intervalle d'étude I, conditions initiales
- ED linéaire : définition, coefficient, second membre, équation homogène, forme résolue ou non résolue
- Ensemble a+B avec $a\in\mathbb{K}$ et $B\subset\mathbb{K}$. Structure des solutions d'une ED linéaire
- ED linéaire du premier ordre y' + a(t)y = b(t) avec $a, b : I \to \mathbb{K}$ continues, méthode de résolution :
 - 0) Donnée de l'intervalle d'étude I
 - 1) Solution générale de l'équation homogène
 - 2) Solution particulière, notamment par la variation de la constante
 - 3) Solution générale de l'ED avec second membre
 - 4) Vérification d'une éventuelle condition initiale
- Problème de Cauchy (linéaire d'ordre 1), théorème de Cauchy-Lipschitz (linéaire d'ordre 1)

Les questions de cours sont en page suivante

Questions de cours

Question Flash. Une question de cours sans démonstration choisie par l'examinateur, sur laquelle on doit passer un temps minimal. Cette question est choisie parmi celles ci-dessous, après les questions longues (chapitres 8 à 10).

Question Longue. Pas de question fixée cette semaine. Les points qui lui sont normalement attribués sont répercutés sur les exercices, qui seront plus nombreux cette semaine.

Questions Flash au programme:

Chapitre 10:

- Donner une primitive de $\frac{u'}{u}$. En déduire une primitive de $\frac{1}{x} \times \frac{1}{\ln x}$.
- Donner une primitive de $u'u^{\alpha}$ avec $\alpha \neq -1$. En déduire une primitive de sh $x \times \frac{1}{\operatorname{ch}^n x}$.
- Donner une primitive de $u'u^{\alpha}$ avec $\alpha \neq -1$. En déduire une primitive de $\cos x \sqrt{\sin x}$.
- Donner une primitive de u'(ax+b) avec $a \neq 0$ et $b \in \mathbb{R}$. En déduire une primitive de $\tan(2x+3)$.
- Si F est une primitive d'une fonction f sur un intervalle I, quelles sont toutes les primitives de f sur I?
- Énoncer le théorème fondamental de l'analyse.
- Donner la définition d'une fonction de classe \mathscr{C}^1 .
- Soit $a \ge 0$. Que peut-on dire de $\int_{-a}^{a} f$ si f est impaire? et si f est paire?

Chapitre 9:

- Énoncer le théorème de la bijection monotone. On pourra en faire tout ou partie oralement...
- Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction bijective. Quelles sont les hypothèses à vérifier pour affirmer que f^{-1} est dérivable en g? Que vaut alors $(f^{-1})'(g)$?
- Soit $x, y \in \mathbb{R}$. Exprimer x^y avec des fonctions usuelles. Pour quelles valeurs de x et de y est-ce que cela a un sens ?
- Énoncer les croissances comparées en $+\infty$
- Quels sont les ensembles de départ et d'arrivée de arcsin ? et de arccos ?
- Pour quelles valeurs de x a-t-on $\arcsin(\sin x) = x$? Et $\sin(\arcsin x) = x$?
- Pour quelles valeurs de x a-t-on $\arccos(\cos x) = x$? Et $\cos(\arccos x) = x$?
- Donner les dérivées de $\arccos x$ et de $\arctan x$.
- Quels sont les ensembles de départ et d'arrivée de arctan ? et de th ?
- Donner deux expressions de la dérivée de thx.

Chapitre 8:

- Soit f, g deux fonctions de D dans \mathbb{R} . Que signifie $f \leq g$?
- Soit f et g deux fonctions dont on note D_f et D_g les ensembles de définitions. Que doit vérifier un réel x pour que $(g \circ f)(x)$ ait un sens ?
- Soit $f:D\to\mathbb{R}$. Donner la définition de "f est croissante" et de "f est strictement décroissante"

- Si f est croissante et g est décroissante, quelle est la monotonie de $g \circ f$? Et si f et g sont toutes deux décroissantes?
- Soit $f:D\to\mathbb{R}$. Donner la définition de "f est majorée"
- Soit $f:D\to\mathbb{R}$. Donner une caractérisation en termes de quantificateurs de "f est bornée"
- \bullet Soit $f:D\to\mathbb{R}.$ Donner la définition de "f admet un minimum en a "
- \bullet Donner la définition de "f est continue en a"
- \bullet Donner la définition de "f est dérivable en a "
- Donner deux formules de dérivation (au choix de l'examinateur)